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A stationary 2-phase flow model with condensation in the capillary regime, based on a separate flow
approach was developed. One of the specificities of the model is that it takes into account the coupling
between a cylindrical interface (region with a thin film of liquid) and a hemispherical interface (main
meniscus at the end of the condensation region). A specific algorithm was developed for numerical res-
olution to overcome the difficulty related to the presence of a free boundary condition. Analysis of the
liquid–vapour interface profiles and the various local parameters allowed us to establish the heat and
mass transfer laws for the particular type of regime studied. We analysed the dominant effects of this
type of flow, which are characterised by dimensionless numbers Ca (capillary number) and Bo (boiling
number), representing the competition between the capillary, viscous and phase-change effects. The
effects due to the difference in density between the two phases and to the Reynolds number were also
studied. We show that the mean heat transfer coefficients are driven by the profile of the interface.
Hence, in certain situations, even when the liquid film becomes thinner on average an unexpected low-
ering of the efficiency of heat transfer is obtained. These effects are closely related to the coupling
between the thin liquid film region and the main meniscus.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Unlike evaporation and boiling, condensation in micro-channels
has been the object of relatively few studies. Most have been car-
ried out with the aim of optimising condensers for air-conditioning
systems [1–14] where the mass flow rates in the channel are from
a hundred to several hundred kg m�2 s�1. To model flow and heat
transfer in these conditions, most authors have used correlative
approaches. In early work, the approaches consisted in attempting
to adapt laws established for condensers with a conventional
diameter (i.e. of the order of 1 cm) to condensation flows in mi-
cro-channels. To give just one example, Shin and Kim [15] com-
pared the pressure drops obtained experimentally during R134a
condensation flow in a 0:691 mm diameter channel with the re-
sults of Friedel’s correlation [16], which was developed for tubes
of larger diameters. A good agreement was found only for values
of mass flow greater than 400 kg m�2 s�1. For such mass flows,
the main factors affecting phase structures and pressure drop are
inertia and interfacial and wall friction. It is therefore not surpris-
ing to obtain similar behaviour since in both cases, capillary and
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gravitational phenomena are weak compared to inertia and
friction.

It is therefore for the smallest mass fluxes that the effects of
miniaturisation are felt most strongly. The study of Médéric et al.
[17] revealed flow regimes visualised directly in horizontal chan-
nels of 10, 1.1 and 0:56 mm. The range of mass fluxes is limited
to values of under 20 kg m�2 s�1, which corresponds to values typ-
ical of applications involving 2-phase cooling loops with capillary
pumping (LHP – Loop Heat Pipe or CPL – Capillary Pumped Loop).
With such low working fluid flows, the roles of gravity and capil-
larity become crucial.

Wu and Cheng [11] observed droplet nucleation in the entrance
region of the channel. Downstream of this zone, the droplets
formed a continuous film at the periphery of the tube. This annular
structure is terminated by a hemispherical meniscus, downstream
of which bubbles become periodically detached.

For a fluid with a higher wettability, neither Begg et al. [2] nor
Médéric et al. [18,19] observed a droplet nucleation zone on the
wall. The detachment of bubbles downstream of the capillary zone
(annular zone + hemispherical meniscus zone) was reported by
Médéric et al. for mass fluxes over a critical value of about
7 kg m�2 s�1 when the working fluid was n-pentane in a tube with
an internal diameter of 0:56 mm. The mechanisms at the origin of
bubble detachment reported in refs [18,19] are the destabilisation
of the interface formed by the extended meniscus under the joint
effects of capillarity, interfacial friction and phase change.
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Nomenclature

Bo boiling number
Ca capillary number
e wall thickness (m)
G mass flux ðkg m�2 s�1Þ
h heat transfer coefficient (internal when no subscript)

ðW m�2 K�1Þ
H global heat transfer coefficient ðW m�2 K�1Þ
L length of the condensation zone (m)
‘v latent heat of vaporisation ðJ kg�1Þ
_m mass flow rate ðkg s�1Þ

Nu Nusselt number
p pressure (Pa)
R radial position of the interface (m)
R1;R2 main curvature radii (m)
Re Reynolds number
Rt internal radius of the channel (m)
T temperature (K)
U velocity ðm s�1Þ
x quality

Greek symbols
� small arbitrary value (m)
C volumic rate of phase change ðkg m�3 s�1Þ
d liquid film thickness (m)

k thermal conductivity ðW m�1 K�1Þ
l dynamic viscosity ðPa sÞ
m kinematic viscosity ðm2 s�1Þ
n constant ð¼ U2=U2Þ
q density ðkg m�3Þ
r surface tension ðN m�1Þ
s shear stress ðN m�2Þ

Superscripts
- reduced value
� dimensionless value

Subscripts
c connection between main meniscus and liquid film

zones
i interface
‘ liquid
lim limit: at the extremity of the stream
m mean
out external
sat saturation
v vapour
w wall
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The analysis of this type of instability in a stream of condensing
vapour firstly requires a good understanding of the stable capillary
regime. This type of regime is of particular interest for CPLs oper-
ating in microgravity or for miniature set-ups [20].

The aim of the present paper is to propose a model of the con-
densation flow in the capillary regime and an associated numerical
resolution method. Such study is complementary of available mod-
els in literature for film condensation observed at higher flow rates
[21,22]. Local analysis of the individual roles of the different mech-
anisms involved in structuring the liquid and vapour phases will
improve the understanding of the processes necessary for scaling
and optimising this type of heat exchanger.

The structure of the paper is as follows: the model, based on a
description of the flow with separate flow approach is presented
in Section 2; in Section 3, the algorithm for the numerical resolu-
tion of the model is detailed. Particular stress is placed on the
method used to solve the problem of the free boundary condition.
Finally, analyses of the results in terms of flow and heat transfer
are presented in Section 4 as a function of the dimensionless
parameters used to characterise the elementary mechanisms
involved.
Fig. 1. Geometrical configuration studied and the imposed boundary conditions.
Cooling is from a water jacket at constant temperature and with a constant heat
transfer coefficient over the whole length of the channel. Flow is assumed to be
axisymmetric.
2. Physical and mathematical models

2.1. Geometric configuration

In this section, we propose a stationary model for the condensa-
tion of a stream of vapour in a narrow-bore channel. The geometric
configuration considered and the boundary conditions imposed are
those used in the experimental study of Médéric et al. [18,19] and
are schematised in Fig. 1. The channel, composed of a wall of thick-
ness e, has a circular cross-section with an internal radius of Rt .
Conductive heat transfers through the wall (of thermal conductiv-
ity kw) are assumed to be purely radial, corresponding to the com-
monest situation, where the wall is thermally thin. The channel is
cooled by a fluid at temperature Tout , which remains constant all
along the channel, with a convective heat transfer coefficient hout
between the outer wall and the coolant that also remains uniform
and constant.

A mass flow of saturated vapour is fixed at the entrance to the
channel. Upon contact with the cool wall of the channel, the va-
pour condenses and a film of liquid forms. Its thickness varies with
the quality, which is itself dependent on the axial position. The film
of liquid ends in an almost hemispherical meniscus when the qual-
ity tends towards zero. Its position is one of the unknowns in the
problem. The cooling of the liquid downstream of the end of the
meniscus is not dealt with in this paper.

Experimentally, this type of flow structure is found in low mass
flux configurations in a microgravity environment or in miniatur-
ised set-ups. In both cases, gravity does not intervene and the flow
can be taken to be axisymetric.

2.2. Mathematical model in stationary regime

The modelling approach developed here describes the liquid
and vapour phases separately. In each of the phases, the parame-
ters are the average over a cross-section, but attention was paid
to respecting continuity conditions at the interface.

The continuity equations for the liquid and vapour phases can
be written, respectively, as:
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where C represents the volumic rate of phase change. By conven-
tion its sign is negative for condensation.

The equations for the conservation of momentum in each of the
phases are written:
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The ratio R2=R2
t represents the void fraction, defined here by the

ratio between the area occupied by the vapour phase and the total
cross-section area. The coefficients n‘ and nv represent the ratio be-
tween the mean of the square of the velocity and the square of the
mean velocity in a cross-section, for the liquid and vapour phases,
respectively. Assuming that the velocity profile corresponds to that
of Couette flow in the liquid phase and Poiseuille flow in the va-
pour phase, these coefficients are equal to 4=3.

From the enthalpy balance, ignoring the sensible heat, we can
determine the volumic rate of phase change C:

C ¼ G
dx
dz
¼ �2HðTsat � ToutÞ

Rt‘v
ð5Þ

where H represents the overall heat transfer coefficient between the
working fluid and the coolant. Considering the exchange to be
purely radial and transfers purely conductive in liquid films, it can
be expressed as:

H ¼ 1
Rt

hout ðRtþeÞ þ
Rt
kw

ln Rtþe
Rt

� �
þ Rt

k‘
ln Rt

R

� � ð6Þ

The radial only heat transfer assumption was widely used with
success for such micro devices (e.g. [21,22]). Indeed, in the liquid
phase, the temperature evolves weakly according to the axial
position.

Closure of the system is obtained by writing the Laplace–Young
equation as:

pv � p‘ ¼ r 1

R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dR

dz
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Balance Eqs. (1)–(5) and the Laplace–Young equation (7) make
up the system of equations to be resolved. In order to facilitate
numerical resolution, the equations are rearranged to give the fol-
lowing system:
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in which the unknowns are: U‘ðzÞ; UvðzÞ; p‘ðzÞ; pvðzÞ and RðzÞ.
As detailed below in Section 2.4, the length L of the stream of

vapour must be added to the list of unknowns to take into account
the fact that the problem to be resolved has a free boundary con-
dition. Hence, an additional equation must be considered; it can
be obtained by noting that in stationary regime, the mass flow rate
of the vapour phase is nil at longitudinal position z ¼ L:

_mvðz¼LÞ ¼ 0 ð13Þ

Before this system of equations can be resolved, the friction
laws at the wall and at the interface must be defined, as must
the limit conditions.

2.3. Friction laws

The wall shear stress is defined assuming Couette flow in the
liquid. This gives:

sw ¼
16
Re‘

1
2
q‘U

2
‘ ð14Þ

Re‘ is the Reynolds number of the liquid flow considering the
hydraulic diameter as the characteristic dimension:

Re‘ ¼
q‘U‘

l‘

2
R2

t � R2

Rt

 !
ð15Þ

As the liquid velocity profile is considered to be linear, the
velocity at the interface is therefore equal to 2U‘, where U‘ is the
mean velocity of the liquid in a cross-section. The interfacial shear
stress is estimated from Wallis’ equation [23]:

si ¼
16
Rev

1
2
qvðUv � 2U‘Þ2 1þ 75 1� R

Rt

� �2
 !" #

ð16Þ

with

Rev ¼
qvðUv � 2U‘Þ2R

lv
ð17Þ

Although this equation was established for water–air flow, it
was successfully used by Médéric [24] in the present configuration.

2.4. Boundary conditions

The imposed boundary conditions were chosen as close as pos-
sible to the experimental conditions of previous studies [18,19].

At the pipe inlet, the flow arrives with an imposed mass flux G
in the form of saturated vapour. We therefore have:

Rðz¼0Þ ¼ Rt ð18Þ

Uvðz¼0Þ ¼
G
qv

ð19Þ

A convective heat transfer coefficient hout ¼ cte is imposed be-
tween the outer wall of the tube and the coolant, which has a con-
stant temperature of Tout . In the following, hout is set to different
values: a small value leads to uniform heat flux although a very
high value corresponds to uniform wall temperature.

In the experimental study, the pressure of the liquid (n-pen-
tane) is roughly equal to the pressure at the pipe outlet (i.e. atmo-
spheric pressure in the experimental set-up). As the flow of the
liquid is not dealt with in the present paper, the pressure at the
outlet will be set at the end of the stream of vapour, i.e. at z ¼ L
which corresponds to the end of the condensation zone:

p‘ðz¼LÞ ¼ po ð20Þ

Note that in the examples studied here, the variations of pres-
sure are very low compared to the mean pressure. The saturation
temperature of the fluid is therefore assumed to remain constant.
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For configurations where the pressure drop is greater or when the
average pressure is lower, the dependence of Tsat on pressure must
be taken into account using the Clapeyron equation.

Downstream of the condensation zone, the condition of symme-
try implies that:

Rðz¼LÞ ¼ 0 ð21Þ

As condensation is complete, the flow condition in the steady
state at this same position means that:

U‘ðz¼LÞ ¼
G
q‘

ð22Þ

The 5 boundary conditions (18)–(22) and the set of Eqs. (8)–(13)
compose the mathematical model of flow in a capillary regime
with a vapour–liquid change of phase. Its resolution is not trivial
since one of the limit positions remains to be found, the value of
L being one of the unknowns of the problem. The problem is there-
fore one with a free boundary condition requiring the use of a par-
ticular algorithm for resolution.

3. Resolution algorithm

As presented so far, the mathematical model is difficult to re-
solve numerically: the longitudinal position of one of the boundary
is unknown.

This quite particular situation explains why Eq. (13) is dealt
with as an equation belonging to the model rather than as a bound-
ary condition.

The algorithm is designed on the basis of a finite difference
schema. In order to make the schema explicit, it is assumed that
all the variables at one of the extremities of the vapour stream
are known. To do so, the values of the unknown variables at that
extremity are arbitrarily fixed. The system of discretised equations
is thus easily resolved in an explicit manner. A dichotomy is then
applied to the initial arbitrary values in order to satisfy the condi-
tions at the other extremity of the stream.

We chose to fix the values of the variables at the downstream
extremity of the vapour stream ðz ¼ LÞ, where 4 boundary condi-
tions have already been imposed (see Section 2.4).

For this longitudinal position, the value of dR
dz remains to be set in

order to have a second boundary condition for the Laplace–Young
equation (7), and the value of pv for the equation of conservation of
momentum (4).

Rather than fixing both these values arbitrarily, the variables pv
and dR

dz are expressed as a function of parameter Rlim which repre-
sents the radius of curvature of the main meniscus at the extremity
of the stream which is perfectly spherical at this location owing to
its axial symmetry. In addition, in order to obtain a finite value for
dR
dz, the conditions at this boundary are set at z ¼ ðL� �Þ, where � has
a very small arbitrary value (it is checked later that the solution is
independent of �) (Fig. 2). In order to calculate the two main cur-
s

Fig. 2. Diagram of the shift in value � of the position where we fix the boundary
conditions of the stream of vapour and definition of the two radii of curvature of the
interface: R1 and R2.
vatures, the planes perpendicular to the interface and including
the normal to the surface were defined as follows. The plane used
to describe what is known as the second curvature is the plane
containing the axis of symmetry and the normal. The first curva-
ture is therefore the curvature of the surface that is observed in
the plane perpendicular to the previous one but also contains the
normal to the surface (Fig. 2).

For these two boundary conditions, we therefore obtain:

dR
dz

� �
z¼L��

¼ � Rlim � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

lim � ðRlim � �Þ2
q ð23Þ

pvðz¼L��Þ ¼ p‘ðz¼L��Þ þ
2r
Rlim

ð24Þ

the 4 other boundary conditions at z ¼ L� � being:

Rðz¼L��Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

lim � ðRlim � �Þ2
q

ð25Þ

Uvðz¼L��Þ ¼
2HRt�ðTsat � ToutÞ

qv‘v R2
lim � Rlim � �ð Þ2

� � ð26Þ

U‘ðz¼L��Þ ¼
G‘vR2

t � 2HRt� Tsat � Toutð Þ
q‘‘v R2

t � R2
lim � Rlim � �ð Þ2

� �� � ð27Þ

p‘ðz¼L��Þ ¼ po ð28Þ

The boundary conditions are set by fixing an initial value for �
and Rlim. The system of equations is then resolved by starting at po-
sition z ¼ L� � and moving against the flow using a 4th order Run-
ge–Kutta method with Matlab� software.

Two situations can then occur:

� either the resolution of the system provides a location where the
thickness of the liquid film tends to zero but not the liquid flow
rate: in this event the value of Rlim is decreased and the system is
re-resolved.

� or, in contrast, the flow of liquid is nil but the thickness of the
film is not. Here, value of Rlim is increased.

A dichotomy on Rlim leads to convergence towards the solution
which simultaneously satisfies the two constraints at the upstream
extremity of the stream of vapour (i.e. zero liquid film thickness
and flow) corresponding to conditions (18) and (19).
4. Results and analyses

4.1. Dimensionless numbers

By making the lengths dimensionless using Rt , velocities of
liquid and vapour using G

q‘
et G

qv
, respectively, and the pressures

using 2r
Rt

, it is easily shown that Eqs. (8)–(12) become the following
dimensionless expressions (where an asterisk denotes dimension-
less magnitudes):
1� R�2

2
dU�‘
dz�
¼ Boþ U�‘R

� dR�

dz�
ð29Þ

R�2

2
dU�v
dz�
¼ �Bo� U�vR�

dR�

dz�
ð30Þ

1
Ca

dp�‘
dz�
¼ �4

U�‘

1� R�2
� �2 þ 4

1

1� R�2 þ 75
	 


ðmU�v � 2lU�‘ Þ

� 2
3

Re‘0 U�‘
dU�‘
dz�
� R�

1� R�2 U�‘
2 dR�

dz�

� �
ð31Þ
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1
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1þ 75ð1� R�2Þ
R�2 mU�v � 2lU�‘
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Re‘0

q
U�v

dU�v
dz�
þ U�v
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Groups of dimensionless numbers appear: the capillary num-
ber, the boiling number, the reduced dynamic viscosity, the re-
duced density and the Reynolds number of the liquid when
flowing in single-phase:

Ca ¼ l‘G
q‘r

ð34Þ

Bo ¼ H Tsat � Toutð Þ
G‘v

ð35Þ

l ¼ lv
l‘

ð36Þ

q ¼ qv
q‘

ð37Þ

Re‘0 ¼
2GRt

l‘

ð38Þ

The reduced kinematic viscosity m ¼ mv
m‘

is calculated from m ¼ l
q.

These dimensionless numbers are then considered below to
represent the evolution of different variables. It can be noted that
Fig. 3. Examples of profiles calculated for the liquid–vapour interface for boiling number
a function of z=Rt; (b) of the reduced position z=L; and (c) Zoom of figure b close to the
l varies over a very limited range considering the fluids most often
used. Its influence will therefore not be investigated in the present
paper.

The numerical resolution of the system of equations enables the
radial position R of the liquid–vapour interface to be determined as
a function of the longitudinal position z. The values of Ca; Bo; l; q
and Re‘0 are fixed independently at desired values, by adjusting the
values of r; ðTsat � ToutÞ; lv ; qv and G. The values of the other ther-
mophysical and geometric parameters are arbitrarily imposed at
the values presented in the study of Médéric et al. [18,19].
4.2. Profile of the interface and local analyses

Two examples of calculated interface profiles are presented in
Fig. 3 and correspond to two values of vapour stream length
(Bo ¼ 0:04 and 0.2). The values of the other dimensionless numbers
are Ca ¼ 10�5; l ¼ 3 � 10�2; q ¼ 5 � 10�3 and Re‘0 ¼ 10. Fig. 3a pre-
sents these profiles versus the longitudinal position z�. The meniscus
extends over a much greater distance for Bo ¼ 0:04. A small value of
the boiling number corresponds to a low mean density of heat flux.
As the mass fluxes, and thus the power to be extracted to obtain
complete condensation, are identical in the two cases presented
then the lower Bo, the larger the area of heat exchange required.

In addition to its influence on the length of the meniscus, the
boiling number plays a role on the shape of the meniscus. Making
the axial position dimensionless by means of the length L, a defor-
mation of the interface is clearly seen to appear (Fig. 3b and c) for
s Bo ¼ 0:04 and Bo ¼ 0:2 (Ca ¼ 10�5; l ¼ 3 � 10�2; q ¼ 5 � 10�3 and Re‘0 ¼ 10); (a) as
wall.
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Bo ¼ 0:04. In the area of the thin film of liquid, the loss of pressure
due to viscous friction (interface and wall) is low (a few Pa, see
Fig. 4). The average curvature at position z in this zone is more
or less identical to the curvature observed in the plane perpendic-
ular to the axis of the micro-tube. The thickness of the film of liquid
increases progressively owing to condensation.

In the junction region between the thin film of liquid and the
main meniscus (cf. Fig. 2, z � L� Rt), the influence of the second ra-
dius of curvature becomes preponderant. Indeed, this second cur-
vature, which had a value of close to zero in the previous section
(the interface that can be observed is almost cylindrical), on going
downstream becomes approximately equal to 1=Rt (the interface
takes the shape of a hemispherical cap of radius approaching Rt).
As the vapour pressure hardly varies over this very short distance,
the multiplication of the average curvature by about 2 leads to a
sharp increase in the pressure gradient in the liquid, which must
be compensated by viscous friction. Consequently, in this transi-
tion zone, the increase in viscous friction is obtained through a
strong decrease in the liquid film thickness (reaching a minimum
dc , Fig. 3c) leading to a strong increase in the mass flux of the liquid
(Fig. 5).

The variations of the second curvature of the interface are less
strong when the value of Bo is high owing to the small length of
the meniscus. Indeed, for such values of Bo, the length over which
the second radius of curvature has a significant effect on the value
of the mean curvature represents a large proportion of the length
of the 2-phase zone. This is illustrated in Fig. 6, which represents
the variation of the maximum thickness of the film of liquid in
the thin-film region (i.e. without considering the main meniscus
zone) plotted against the boiling number. It can be observed that
for high values of Bo, the maximum thickness only represents a
few percent of the radius of the tube, illustrating the low interface
deformation. As the value of Bo decreases, and hence the length L
increases, the thickness dmax increases rapidly until it represents
more than 50% of the radius of the tube. For values of Bo lower than
0.02, no stationary solution is obtained. The absence of a stationary
solution is not in conflict with the experimental results of Médéric
et al. [19] who show that beyond a critical flow rate threshold, non-
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Fig. 4. Examples of profiles of dimensionless capillary pressure for boiling numbers Bo ¼
configurations, the obtained variations are mainly due to those in the liquid phase, the
stationary phenomena appear. In these conditions, a non-station-
ary model must be developed to analyse the stability of this type
of flow.

4.3. Laws of heat transfer

The applications that can be concerned by the present study in-
volve heat exchangers working in microgravity or miniaturised
exchangers in which the mass flux is low. For the scaling of this
type of component, it is useful to know the laws governing the var-
iation of the average heat transfer coefficients. The local coefficient
concerning internal heat exchange at position z is defined as:

hðzÞ ¼ k‘
Rt ln Rt

R

� � ð39Þ

From this, we can deduce the mean internal Nusselt number
considering the channel diameter as the characteristic dimension:

Num ¼
hm2Rt

k‘
¼ 1

L

Z L

0

�2

ln 1� dðzÞ
Rt

� �dz ð40Þ

where dðzÞ is the local thickness of the liquid film ðdðzÞ ¼ Rt � RðzÞÞ.

4.3.1. Influence of heat flux
As previously indicated in the hypotheses of the mathematical

model, the value of the mean internal Nusselt number is solely
dependent on the thickness profile of the liquid film, i.e. the shape
of the interface. The shape in turn depends on the boundary condi-
tions imposed on the channel wall. When the external heat trans-
fer coefficient is low compared to the internal one, it is the outside
that limits the transfers and thus the situation is one of uniform
heat flux. In contrast, if the external heat transfer coefficient is very
high, the wall will have a uniform temperature equal to that of the
coolant (the conductive resistance of the wall then being fixed at
0).

The variations of the mean internal Nusselt number as a func-
tion of the boiling number are reported in Fig. 7 for the two situa-
tions (uniform heat flux and constant wall temperature).
0.5 0.6 0.7 0.8 0.9 1

z/L

Bo=0.04

Bo=0.2

0:04 and Bo ¼ 0:2 (Ca ¼ 10�5; l ¼ 3 � 10�2; q ¼ 5 � 10�3 and Re‘0 ¼ 10). In the two
pressure of the vapour remaining nearly constant.



0

5

10

15

20

25

30

35

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lU
l /

 G

vU
v 
/ G

z/L

lUl / G (Bo = 0.04)

lUl / G (Bo = 0.2)

vUv / G (Bo = 0.04)

vUv / G (Bo = 0.2)

Fig. 5. Examples of the non-dimensional mass flux versus the reduced position for Bo ¼ 0:04 and Bo ¼ 0:2 (Ca ¼ 10�5; l ¼ 3 � 10�2; q ¼ 5 � 10�3 and Re‘0 ¼ 10). The values
correspond to the interface profiles given in Fig. 3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

m
ax

 / 
R

t

Bo

Fig. 6. Maximum dimensionless thickness of the liquid film versus the boiling number (Ca ¼ 10�5; l ¼ 3 � 10�2; q ¼ 5 � 10�3 and Re‘0 ¼ 10).

5136 M. Miscevic et al. / International Journal of Heat and Mass Transfer 52 (2009) 5130–5140
Note that the boiling number, which is by definition linked to
the change of phase, is calculated from Hm by the expression:

Bo ¼ Hm Tsat � Toutð Þ
G‘v

ð41Þ

where Hm is the mean global heat transfer coefficient such that
Hm2pRtLDT represents the total heat flux:

Hm ¼
1
L

Z L

0

1
hout

Rt

Rt þ e
þ 1

hðzÞ þ
Rt

kw ln Rtþe
Rt

� �
0
@

1
A
�1

dz ð42Þ
Numerical calculations are performed considering values of the
boiling number down to 0.02, which correspond to a maximum
length of the meniscus of about 25 times the radius of the channel.
The calculations for Bo > 0:3 lead to lengths of the order of 1.5 the
channel radius.

In this range of values of Bo, the mean internal Nusselt number
varies from 30 to 80 when the wall temperature is constant and
40–100 when the heat flux is uniform. The increase obtained is
not intuitive since it implies that drawing out the meniscus does
not give more intense transfers.
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To study this behaviour, we plotted the variations of film thick-
ness versus the boiling number (Fig. 7). It can be seen that the
shorter the meniscus, the greater the mean thickness of the liquid
film. Num and dm are both increasing functions of Bo. It therefore
appears that increasing the mean thickness of the liquid film,
unexpectedly leads to an increase in heat transfer. This behaviour
is due to the shape change of the interface as Bo varies. Indeed, the
shorter the meniscus, the lower the values of dmax and dc , which im-
plies that the film becomes thinner in the thin-film region (Fig. 6).
At the same time, the mean thickness of the film increases (Fig. 7).
This antagonism in the variations of ðdmax; dcÞ and of dm is related to
the relative weight of the main meniscus region in the calculation
of the mean thickness of the liquid film. We therefore have:

� a zone of thin film where the heat transfers are more intense,
� a main meniscus region whose length (divided by L) is increased

and where transfers are almost invariable (and much lower than
the transfers occurring in the thin film).

In terms of intensification of heat transfer, the positive effect
obtained in the thin film region is greater than the negative effect
arising from the increased role of the main meniscus. The overall
result is a rise in the mean Nusselt number in spite of the increase
in dm.

4.3.2. Influence of capillary-viscous effects
The intensity of heat transfer therefore depends on the distribu-

tion of the liquid and vapour phases in the channel. In addition to
the imposed heat flux (that can be pictured by the boiling number),
this distribution depends on the value of the capillary number. To
illustrate this dependence, we plotted the variation of the mean
Nusselt number against Bo for various values of Ca, and the modi-
fications of the interface profile caused by the variation of the value
of Ca for Bo ¼ 0:15 (Figs. 8 and 9, respectively).

The results in Fig. 8 show that Num increases with Bo, whatever
the value of Ca. However, for a fixed value of Bo, an increase on Ca
caused a clear decrease in Num. For a low value of the capillary
number, the surface tension effects are high and the concavity of
the interface changes little (Fig. 9 curve Ca ¼ 10�7). By increasing
the value of Ca, the effects of surface tension decrease; the inter-
face presents a more sharply curved profile (Fig. 9 curve
Ca ¼ 5 � 10�5), leading to a reduction in global heat transfer over
the whole length of the meniscus.

A conclusion similar to that drawn in the previous section can
therefore be proposed: the variations in the curvature of the
liquid–vapour interface profile (i.e. the numerous changes of sign
in the second curvature) has the consequence that it decreases the
values of the average heat transfer coefficients, whether this defor-
mation is induced by the decrease in the heat flux at the wall or by
the decrease of the capillary effects compared to the viscous effects.

Fig. 8 also shows that at low values of CaðCa K 5 � 10�6Þ, the ten-
dency in the variation of Num changes sharply for values of Bo low-
er than about 0:08, i.e. when L becomes about 6 or 7 times higher
than Rt . This critical length is close to 2pRt which corresponds to
the shortest unstable wavelength of the Rayleigh–Plateau capillary
instability. To conclude as to the possibility of the existence of
these stationary solutions, a non-stationary approach, which in-
cludes the effects of confinement and of phase change must be
developed, as must an analysis of the associated stability.

4.3.3. Influence of the density contrast
A third dimensionless number that affects the distribution of

the phases is the ratio q of the densities of the vapour and liquid
phases. A value of 5 � 10�3 for q is high and corresponds to the or-
der of magnitude of the ratio for n-pentane. For water, the value of
q is one order of magnitude lower.

A three-dimensional representation (Fig. 10) of the general
appearance of the liquid–vapour interface is given for q ¼ 5 � 10�4

and q ¼ 5 � 10�3, the other parameters are identical in both cases.
There is a distinctive modification of the interface shape. At
q ¼ 5 � 10�3, the amplitude of the deformation of the liquid films is
clearly much greater than for q ¼ 5 � 10�4. This density ratio appears
in the 2nd and 1st terms on the right sides of Eqs. (31) and (32),
respectively. An increase in q leads to an increase in the effect of
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Fig. 10. Illustration of the effect of a tenfold increase in q on the deformation of the
interface profile when the capillary number is low ðCa ¼ 10�7Þ: the upper figure
was obtained for q ¼ 5 � 10�4 and the lower figure for q ¼ 5 � 10�3. In both cases the
meniscus length was L ¼ 7:2Rt .
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these 2 terms, i.e. a reduction in viscous friction. The shape of the
interface is then mainly determined by the capillary effects (remem-
ber that, in this example, Ca is very small), which explains the large
deformation obtained. Indeed, when the meniscus is sufficiently
drawn out, the deformation is determined by the radius of curvature
R1. As discussed previously, non-stationary modelling would proba-
bly lead to the appearance of a capillary instability of the Rayleigh–
Plateau type. It can however, be noted that the influence of q be-
comes rapidly attenuated as the capillary number is increased.

4.3.4. Discussion about the low Reynolds hypothesis
Most microfluidics studies assume the low Reynolds hypothe-

sis. In the case of condensation flow, making this assumption
means that the liquid and vapour phase accelerations are ignored,
as are the effects of phase changes in the equations of conservation
of momentum (31) and (32). In this section, we propose to deter-
mine the point at which the low Reynolds hypothesis becomes
no-longer relevant. So, let us consider an intermediate boiling
number ðBo ¼ 0:144Þ and different values of the capillary number.
The results in terms of mean Nusselt number and mean dimen-
sionless thicknesses are reported in Fig. 11. Similar behaviour can
be seen irrespective of Ca for low Re‘0 numbers. In this case, we
can indeed see an indifference of Num with respect to the Reynolds
number. This justifies the standard low Reynolds hypothesis. How-
ever, the results show that beyond Re‘0 � 100, noticeable effects
can be seen on the variation of Num. Moreover, these effects differ
as the capillary number changes: for low values of Ca, an increase
in Re‘0 intensifies transfer, while the opposite is noted at higher
values of Ca.

An interpretation of this difference of behaviour can be made
from the observation of the interface profiles obtained for different
values of Ca and Re‘0 (Fig. 12). When the capillary number is low
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ðCa ¼ 10�7Þ and as the Reynolds number is raised from 1 to 1000
the profile of the interface becomes less irregular. This smoothing
causes a reduction in the mean thickness of the film of liquid
(Fig. 11) and an increase of Num.

For higher values of the capillary number (10-4 in this example),
an increase in the Reynolds number also leads to smoothing of the
interface. However, a high value of Ca does not allow a thin film of
liquid to be maintained in the transition region between the main
meniscus and the thin film (dc , see Fig. 3). Indeed, as mentioned in
paragraph 4.2, in this transition region the sharp capillary pressure
jump caused by the variation of the mean curvature leads to local
thinning of the liquid film. The higher the capillary number, the
less intense the thinning. Thus, a high value of Ca with a high value
of Re‘0 leads to thicker liquid film and consequently reduced heat
transfer.

5. Conclusions

Condensation in the capillary regime can be modelled by sepa-
rately considering the two phases in the model. We established a
system of equations based on this approach and proposed a resolu-
tion algorithm that enables a numerical solution to be found for
this type of problem with a free boundary condition.

The results were analysed taking 4 dimensionless numbers into
account: the boiling number, the capillary number, the density
ratio of the phases and the liquid Reynolds number.

The general shape of the interfaces obtained over the range of
values studied for the dimensionless numbers includes a region
with a thin layer of liquid and a main meniscus region with a hemi-
spherical end. Analysing the flow revealed that the pressure drop
due to friction in the liquid mainly occurs at the junction between
these two regions. The pressure drop is caused by the thinning of
the liquid film which increases as Ca decreases. This influences
the shape of the interface and thus affects heat transfer.

From a heat transfer point of view, it has been shown that
(mean) thinning of the liquid film can reduce efficiency owing to
the change in the spatial distribution of the phases. Hence, when
the interface is deformed under the effect of a decrease in the boil-
ing number or an increase in the capillary number, the average
Nusselt number decreases. If strongly amplified, this deformation
is likely to destabilise the interface and form liquid bridges, leading
to a transition in the flow regime.
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